Please read this operating manual carefully. Correct assembly of the tool will save you set-up time and allow you to achieve optimal results.

Knurling profile	Manufacturing process
RGE left-hand/ right-hand knurling, raised points, 30°	
RGE left-hand/ right-hand knuring, raised points, 45°	

Table 2:Manutacturing process

Fig. 1: Exploded drawing C602
Fig. 2: Exploded drowing C 622
Ordering spare parts
-Please specify the tool number and the corresponding position number (see figures 1 and 2).
(3) Approach of the workpiece and checking the centre height

The following formula can be used as arough guideline for the approach position of the tool in X-direction. This value depends on the workpiece diametert to be machine and the tool type which is used (see Tab. 3+Fig. 6).
Approach position $a=\sqrt{(\text { radius ofthe workpiece })^{2}-(c)^{2}}$

Knurling wheel \varnothing	Variable c
8.9	4.4

Table 3:Varioble c for copproach position

With cornect adiustment of the centre height, both knuring edges are simultaneously engaged duning the approach of the workpiece. Ifflis is not the case, the centre of rotation of the knuring tool must be adjusted 6, Corection of he curfing head).
(4) Clearance angle adjustment and checking the knurl impression With correct use, the knurl impression is approx. $1 / 3$ of the width of the knurling wheel (Fig. .7.ref. A). Ensure that the front cut of the ennuling wheel immerses in the material approx. $1^{\circ}-2^{\circ}$. The maximum immersion depth should only bea few hundredths. If there is a knurl impression as shown in Figure 7 , ref. B, a correction of he knuring wheels must be carried out (cf. chapter 3 , ref. 2)
(5). Knurl beginning
debeginningof the knuring takes place approx. 1 mm affer the beginning
Caution: Do not start knurling inthe middle//iffront of the component: (Fig. 8, 8ef. B)
6. Correction of the culting head

Correction of the cutting head must be carried out ifboth knurling wheels do not rotate simultaneously while approaching the workpiece or a profile with uneven profile threads is created.
$C 602$ series
Adjustment can take place wilh the two fine-adiusting screws (Fig. 10, Pos. 10a+ 10b). For this purpose, unscrew screw 10a and adiust he inclination with screw 10 borvice versa. After adjustment, tighten the opposite screw hand-tight.

Fig. 10 Correcion ofthe cutting head 6602

C622 series
Forthis tool type, Ite locking screw must be loosened first (Fig. 11, Pos. 10). Then, the tool head must be adjusted with the two fine-adiusting screws (Fig. 11, Pos. 11). Ater adiustment of the working range, re-ighten the locking screw.
9. Guidelines for cutting speed and feed rates

Material	$\begin{gathered} \text { Workpiece } \\ \varnothing \\ {[\mathrm{mm}]} \end{gathered}$	Knurling wheel \varnothing [mm]	Vc [m/ min]		f [mm/rotation]							
					Radial		Axial					
					Pitch [mm]							
			from	to			from	to	$\begin{aligned} & >0.3 \\ & <0.5 \end{aligned}$	>0.5	$\begin{aligned} & >1.0 \\ & <1.5 \end{aligned}$	$\begin{aligned} & >1.5 \\ & <2.0 \end{aligned}$
Freecutting steel	<10	8.9 / 14.5 / 21.5	40	70	0.04	0.08	0.20	0.13	0.08	0.07		
	10-40	8.9 / 14.5 / 21.5 / 32 / 42	50	90	0.05	0.10	0.28	0.18	0.14	0.10		
	40-100	14.5 / 21.5 / $32 / 42$	65	110	0.05	0.10	0.35	0.25	0.17	0.11		
	100-250	21.5 / 32 / 42	65	110	0.05	0.10	0.42	0.28	0.18	0.13		
	>250	$32 / 42$	80	100	0.05	0.10	0.45	0.29	0.20	0.14		
Stainless steel	<10	$8.9 / 14.5 / 21.5$	22	40	0.04	0.08	0.14	0.09	0.06	0.05		
	10-40	$8.9 / 14.5 / 21.5 / 32 / 42$	30	50	0.05	0.10	0.20	0.13	0.10	0.07		
	40-100	14.5 / 21.5 / $32 / 42$	35	60	0.05	0.10	0.25	0.18	0.12	0.08		
	100-250	21.5 / 32 / 42	35	60	0.05	0.10	0.29	0.20	0.13	0.09		
	>250	$32 / 42$	45	55	0.05	0.10	0.31	0.21	0.14	0.10		
Brass	<10	$8.9 / 14.5 / 21.5$	55	100	0.04	0.08	0.22	0.14	0.09	0.08		
	10-40	$8.9 / 14.5 / 21.5 / 32 / 42$	70	125	0.05	0.10	0.31	0.20	0.15	0.11		
	40-100	14.5 / 21.5 / $32 / 42$	90	155	0.05	0.10	0.39	0.28	0.18	0.12		
	100-250	21.5 / 32 / 42	90	155	0.05	0.10	0.46	0.31	0.20	0.14		
	>250	$32 / 42$	115	140	0.05	0.10	0.49	0.32	0.22	0.15		
Aluminium	<10	$8.9 / 14.5 / 21.5$	70	120	0.04	0.08	0.12	0.08	0.05	0.04		
	10-40	$8.9 / 14.5 / 21.5 / 32 / 42$	80	150	0.05	0.10	0.17	0.11	0.08	0.06		
	40-100	14.5 / 21.5 / $32 / 42$	110	160	0.05	0.10	0.21	0.15	0.10	0.07		
	100-250	21.5 / $32 / 42$	110	160	0.05	0.10	0.25	0.17	0.11	0.08		
	>250	$32 / 42$	130	150	0.05	0.10	0.27	0.18	0.12	0.08		

Table 6 : Cuting gspeed and feed rate

